	
	Use Case Guideline

Guideline for Developing Use Cases

Purpose

The purpose of this guideline is to provide assistance in developing use cases. Use cases provide a way to represent user requirements and are an important component in the process of deriving functional requirements.

Background

A use case describes how an “actor” accomplishes tasks by interacting with the software application/system. An actor may be a person, another software application or system, hardware, or some other entity that interacts with the system, and many times is derived from the user classes identified early in the requirements phase. The actor may therefore, represent a role associated with a specific user class. For example, a use case could be defined that represents a project manager requesting a template from the web site associated with this guideline. The actor for this use case may be represented as a Template Requestor, which could be derived from the user class associated with experienced project managers.

Use cases are comprised of usage scenarios, which describe a series of related tasks and several interaction sequences that lead to completing the tasks. One scenario is identified as the main flow (also known as the normal course, normal flow, or “happy path”), which describes the sequence of dialogue elements or interactions between the actor and the system. For the use case described above, the Template Requestor (actor) would request (select) a specific template from a list of available templates organized in alphabetical order. To help in the visualization this use case it may be represented as a use case diagram using the Unified Modeling Language notation. See Figure 1.

[image: image1.wmf]Request Template

Template

Requestor

Figure 1 - Request Template Use Case

Additionally, the use case can be “extended” by adding an alternative path to the main flow. For example, the Template Requestor could select an Example of a document that has been developed to illustrate the use of the template. From this Example the Template Requestor could then select the appropriate template for use. Both the main flow and the alternate flow must represent complete or “stand-alone” paths for the actor to use. Figure 2 illustrates the use of an alternate flow.

[image: image2.wmf]Template

Requestor

Request Template

Request an Example

<<extend>>

Figure 2 - "Extended" Request Template Use Case

To help simplify the creation of use cases or eliminate preparing redundant use cases, the requirements analysts may choose to incorporate or include previously created use cases that contain common functionality. For example, to request a template on the web site a Template Requestor must select the software development methodology component and then select the Templates & Examples tab. The use of this common use case is illustrated in Figure 3.

[image: image3.wmf]Template

Requestor

Request Template

Request an Example

<<extend>>

Use the Software Development

Methodology

<<include>>

Figure 3 - Request Template Use Case With <<include>> Relationship

Main flow and alternate flow use cases result in successful tasks being accomplished with the software application/system. For conditions that result in a task not being successfully accomplished, the analyst should document exceptions, which are sometimes regarded by requirements analysts as another type of alternate flow.

Approach

The program manager, project manager, business analyst or other individuals responsible for defining user requirements (requirements analysts) should identify use cases. Use cases help define requirements by establishing “what the users need the software application/system to do” rather than “asking users what they want the software application/system to do”. The objective of the use case approach to defining user requirements is to describe all tasks the users need to perform with the software application/system. In an ideal world, the individuals responsible for defining user requirements would capture every possible use case that encompasses the total functionality of the software application/system. In real situations, however, the user requirements analysts must decide the number of use cases they will define, and the level of detail required for each individual use case.

Requirements analysts should gather the information to develop the use cases directly from the representatives of the user classes. This information may be gathered in facilitated workshops, through interviews, and/or through research of existing processes.

Key Steps

The requirements analysts should begin the process of developing user requirements and functional requirements by developing use cases. There are a number of different approaches for developing use cases. The following are four suggested approaches.

· Identify the actors and their roles. Next identify the business processes in which each actor participates. Use the actors and business processes to define use cases.

· Identify the external events to which the software application/system must respond. Map these events to the participating actors and the necessary use cases.

· Define business processes as specific scenarios. Derive use cases from the scenarios and identify the actors involved with each use case.

· Develop use cases from existing functional requirements. Validate the use cases with the functional requirements and delete the use cases as appropriate.

The following are key steps in developing user and functional requirements using the use case approach.

Step 1 - Identify Potential Use Cases

Identify potential use cases through interviews or in use case workshops. The requirements analysts should advise the users prior to the interview or workshop that they need to be thinking about the business processes or tasks they would need to execute with the new software application/system.

Step 2 - Develop Use Case Descriptions

Develop a high-level description of the use case. The level of detail required for the description should be sufficient to support discussion and prioritization of the use case.

Step 3 - Prioritize Use Cases

Prioritize the use cases. Choose an appropriate prioritization scheme. For example, High/Medium/Low or Essential/Important/Nice-to-have. For higher priority use cases, or based on the scope of the project, continue defining additional detailed information for each use case.

Step 4 - Define Details for Selected Use Cases

Define additional details for each use case. Use the Use Case template to document use case details. The following is a list of additional information suggested for each use case.

· Pre-Conditions – includes anything that must be complete prior to the initiation of the use case. For example, the user may be required to be logged into the software application or system.

· Post-Conditions – describes the end results expected by the user. For example, the Request Template Use Case (associated with this web site) post conditions may be described as the user having saved a template in a designated folder.
· Frequency – identifies how often the use case is performed. (e.g., number/time)

· Main Flow – describes the steps associated with the use case. The steps should be listed in bullet form. The analyst may consider separating actor actions from system responses.

· Alternate Flow – describes any alternate flows. Alternate flows still result in successful completion of tasks but deviate from the main flow.

· Exceptions – describes any alternate flows that do not end in a successful completion of the use case. For example, any error messages that are displayed as a result of an error by the user would be included in exceptions.

· Includes – identifies any use cases that are included or required for the designated use case.

· Special Requirements – describes any special requirements associated with the use case.

· Assumptions – identifies any assumptions associated with the use case.

Step 5 - Define Functional Requirements

Starting with the use cases, derive functional requirements. Functional requirements define what the system/application will do. They describe the observable behaviors the system will exhibit. For example, a use case could be developed for a customer ordering a product through a web site. A functional requirement associated with this use case could read, “Each submitted customer order shall be assigned a unique, system-generated sequence number.”

Step 6 - Prepare Analysis Models

For complex use cases consider using graphical analysis models to further define functional requirements. Graphical analysis models may include entity relationship diagrams, data flow diagrams, state-transition diagrams, object and class diagrams, dialog maps, and user interface sketches or maps.

Step 7 - Prepare Test Cases

Prepare test cases from the use cases. The conceptual test cases should help to identify how the system should behave in some usage scenario. The test cases also help to further define the functional requirements of the system.

Step 8 - Verify Functional Requirements and Analysis Models

Verify that each functional requirement and analysis model meets the criteria established for a good requirement. These criteria ensure that the requirements are complete, correct, feasible, necessary, unambiguous, verifiable, modifiable, traceable and prioritized by the customer.

Some Frequently Asked Questions

 How Many Use Cases Should An Analyst Develop?

The number of use cases should be less than the number of functional requirements but more than the number of business requirements. Using the Normal Flow and Alternate Flows, and the Include and Exceptions categories for each use case may minimize the number of use cases needed.

How Do You Avoid The Duplication Of Use Cases?

Use the Include category to minimize duplication of use cases.
Should Use Cases Include User Interface Design?

Sketches or maps of user interfaces to help identify functional requirements are quite acceptable analysis models used during requirements definition. Actual design of the user interfaces, however, should be created in the Design phase of the project.

Should Every Requirement Be Associated With A Use Case?

Not every requirement will be associated with a use case. Non-functional requirements such as scalability, portability, etc., as well as other external interface requirements, may not be associated directly with a use case.

Summary

The program manager, project manager, business analyst or other individuals responsible for defining requirements should identify use cases as part of the Requirements Phase. Defining use cases is an important step in developing user requirements, and ultimately in deriving functional requirements. Use cases are also used to develop test cases that help the analysts verify that the correct system is being built.

References and Related Documents

Software Requirements – by Karl E. Wiegers

Project Initiation Document – PM Solutions, Inc.

Software Requirements Specification – PM Solutions, Inc

guide_usecase.doc

Page 1 of 6

