[image: image1]
OHIO BOARD OF REGENTS
Higher Education Information System

Compiled by:
Jeremy Boeckman

Owen Daniels

Radha Venkatraman

Software Testing Guide
Table of Contents

3Testing Principles

3Types of Testing Methods

41. Unit Testing (White Box Testing)

4Path Analysis (Branch testing)

6Equivalence Partitioning

7Boundary Value Analysis

82. Functional Requirements Testing (Black Box Testing)

8Specification Derived Tests

8Path Analysis

8Equivalence Partitioning & Boundary Value Analysis

9Error Guessing

9Positive Testing

9Error Handling (Functional Negative tests)

103. Smoke Testing

114. Control Testing

115. Integration Testing

125.a. Intersystem Testing

136. Parallel Testing

147. System Testing

14Error Recovery

14Security

14Stress Testing

15Performance Testing

168. Regression Testing

179. Operations Testing

1810. User Acceptance Testing

18Testing Web Applications

18Gray Box Testing Approach

19User Interface Tests

19I. User interaction (data input)

20Browser & Operating System Compatibility

20HEI Policy (Aug 24, 2004)

20Navigation Methods

20Feedback and Error Messages

21II. Data Presentation (Data Output)

21Functional Tests

21FAST - Functional Acceptance Simple Tests

22TOFT - Task Oriented Functional Tests

22FET – Forced Error Test

22Boundary Condition Tests and Equivalent Class Analysis

22Exploratory Testing

23Database Tests

24Appendix A (Black Box Path Analysis Example)

31Appendix B (Equivalence Partitioning & Boundary Value Analysis Example)

36Appendix C (Web Testing Checklist)

37Appendix D (Input Validation Matrix)

39Appendix E (Browser & Operating System Compatibility Matrix)

40Appendix F (Edit and Load Checklist)

42Appendix G (Operations Testing Approach Checklist)

43List of References

43Testing Examples in HEI

Testing Principles TC "Testing Principles" \f C \l "1"
Before applying methods to design effective test cases we must understand the basic principles that guide software testing.

1. All tests should be traceable to customer requirements: The objective of software testing is to uncover errors. It follows that the most severe defects (from the customer’s point of view) are those that cause the program to fail to meet its requirements.

2. Tests should be planned long before testing begins: Test planning can begin as soon as the requirements model is complete. Detailed definition of test cases can begin as soon as the design model has been solidified. Therefore, all tests can be planned and designed before any code has been generated.

3. The Pareto principle applies to software testing: Stated simply, the Pareto principle implies that 80% of all errors uncovered during testing will likely be traceable to 20% of all program modules. The problem, of course, is to isolate these suspect modules and to thoroughly test them.

4. Testing should begin “in the small” and progress toward testing “in the large”: The first tests planned and executed generally focus on individual program modules. As testing progresses, testing shifts focus in an attempt to find errors in integrated clusters of modules and ultimately in the entire system.

5. Exhaustive testing is not practical: The number of path permutations for even a moderately sized program can be exceptionally large. For this reason, it is impractical to execute every combination of paths during testing. It is possible, however, to adequately cover program logic and to ensure that all conditions in the procedural design have been exercised.

Types of Testing Methods TC "Types of Testing Methods" \f C \l "1"
There are a number of testing techniques a test analyst can employ in designing and developing effective test cases.

1. Unit Testing (also known as White Box Testing) uses the following to test the specific unit under test

a. Path Analysis

b. Equivalence Partitioning

c. Boundary Value Analysis

2. Functional Testing (also known as Black Box Testing) uses the following to test the entire application under test.
a. Specification Derived Tests

b. Path Analysis

c. Equivalence Partitioning

d. Boundary Value Analysis

e. Error Guessing

f. Positive Testing

g. Error Handling (Negative Testing)
3. Smoke Testing

4. Control Testing

5. Integration Testing (or 5.a. Inter Systems Testing)

6. Parallel Testing

7. System Testing

a. Recovery Testing

b. Security Testing

c. Stress Testing

d. Performance Testing

8. Regression Testing

9. Operations Testing

10. User Acceptance Testing

1. Unit Testing (White Box Testing): TC "1. Unit Testing (White Box Testing)" \f C \l "2"
A test designed to demonstrate that the program logic of a given unit or component performs according to the program spec. (or to clients and users reasonable expectations)
Types of Unit Testing:
1. Path Analysis (Branch testing): TC "Path Analysis (Branch testing)" \f C \l "4" It is a method of identifying tests based on the flows or paths that can be taken through a system.
A Basis Path is a unique path through a system or process where no iterations are allowed.
· Each basis path must be covered (i.e. tested at least once)

· Combinations and permutations of basis paths do not need to be tested.

Example:
1) For every record received in the file check
2) If dependency status = D (dependant) then

3) If Parent’s legal residence = OH
4)
then student is an Ohio Resident

5) Else If Parent’s legal residence not = OH
6)
then student is NOT an Ohio Resident and status = FA (Failed).

Write Error 122 to ISIR Error Table.

7) Else If Parent’s legal residence = Blank

8)
then status = IN (Incomplete).

Write Error 105 to ISIR Error Table.

9) End-if
 10) End-For

To find the number of basis paths we can use the formula [E – N + 2] where

E is the number of edges in a flowchart (13) and N is the number of nodes (10).

A node is defined as a block of consecutive statements or expressions.

An edge is defined as the control flow or branch from the last element of the

source block to the first element of the destination block (simply put, can count
the number of arrows leading from one element to the other).

Number of paths = 13 – 10 + 2 = 5

1 – 10 (No records in file)

1 – 2 – 9 – 1 (dependency status not = D)

1 – 2 – 3 – 4 – 9 – 1 (dependency status = D, residency = OH)

1 – 2 – 5 – 6 – 9 – 1 (dep = D, residency not = OH, Error 122, status = FA)

1 – 2 – 7 – 8 – 9 – 1 (dep = D, residency = blank, Error 105, status = IN)

Examples of basis paths that need not be tested:
A student fills out an application and has a choice of writing six possible schools he can attend. He writes 6 school codes in this application. These 6 codes would need to be translated to their 4 character HEI school code.

The student has a choice of any school in Ohio. But we can test with only 1 school code. All combinations of various schools need not be tested.

That is if the program uses a loop 6 times then this path is just a concatenation of basis paths.

2. Equivalence Partitioning: TC "Equivalence Partitioning" \f C \l "4" It is based upon splitting the inputs and outputs of the unit under test into a number of partitions, where the behavior of the software is equivalent for any value within a particular partition. Or,
It is a method that divides the input of a program into classes of data from which test cases can be derived. And ideal test case single-handedly uncovers a class of errors (e.g. incorrect processing of all character data) that might otherwise require many cases to be executed before the general error is observed. It strives to define a test case that uncovers classes of errors, thereby reducing the total number of test cases that must be developed.
Example 1:

If the Delete Switch is N and the Level of Degree or Certificate is 01 or 02 and Credit Hours to Degree is numeric and less than 20

Write Warning A50 on edit report file

Input Partitions

Output Partitions

Del Sw

Level
CrHrs

N

01
 15

Warning A50

N

01
 25

No Warning (Edit Passes)

N

01
 20

No Warning (Error in logic? Check specs?)
Example 2:
Specifications for validating expense claims for hotel accommodation include the following requirements:
· There is an upper limit of $70 for accommodation expense claims

· Any claims above $70 should be rejected and cause an error message to be displayed.

· All expense amounts should be greater than $0 and an error message should be displayed if this is not the case.

Analysis: 0

 70

Hotel Charge<=0 0<Hotel Charge<=70 Hotel Charge > 70

Test Cases for the example:
Test Case id
HotelCharge
Partition Tested

Expected Output

 1

 50

0< HotelCharge <=70

 OK

 2

 -25

Hotel Charge <=0

 Error Message

 3

 89

Hotel Charge > 70

 Error Message

Example 3:

 If input is a parent’s income, a 5 digit integer between 10,000 and 99,999

Equivalence Partitions

Test Cases

<10,000

8,000

10,000 – 99,999

58,000

>99,999

110,000

Other examples of equivalence classes:
· Membership in groups (dates, times, country names, state names etc.)

· Invalid inputs (placing symbols in text only fields etc)

· Equivalent numbers of items entered(such as number of characters entered into a field)

Zip code (5 digits). Valid class = any 5 digit number;

 Invalid class = 4 or 6 digit number;

3. Boundary Value Analysis TC "Boundary Value Analysis" \f C \l "4" : It uses the same analysis of partitions as equivalence partitioning. However, boundary value analysis assumes that errors are most likely to exist at the boundaries between partitions. This analysis incorporates a degree of negative testing.

Example 1:
Using the above example (3) of income:
If input is a parent’s income, a 5 digit integer between 10,000 and 99,999

Test cases:

9999; 10,000; 10001;
99,998; 99,999; 100,000;
100,001;
If income was not in integers but dollars and cents –

Test cases:

9999.99; 10,000; 10,000.01;
99,998.99; 99,999.99; 100,000.01;

99,999.10;

 Example 2:
 Using the same example 2 of Equivalence Partitioning:
Specifications for validating expense claims for hotel accommodation include the following requirements:

· There is an upper limit of $70 for accommodation expense claims

· Any claims above $70 should be rejected and cause an error message to be displayed.

· All expense amounts should be greater than $0 and an error message should be displayed if this is not the case.

0

 70

 -1 +1

 69 71

TestCase Id
Hotel Charge

Boundary Tested
Expected Output

 1

 -1

0

Error Message

 2

 0

0

Error Message

 3

 1

0

 OK

 4

 69

70

 OK

 5

 70

70

 OK

 6

 71

70

Error Message

2. Functional Requirements Testing (Black Box Testing): TC "2. Functional Requirements Testing (Black Box Testing)" \f C \l "2"
1. Specification Derived Tests: TC "Specification Derived Tests" \f C \l "4" As the name suggests, test cases are designed by walking through the relevant specifications. Each test case should test one or more statements of specification. It is often practical to make the sequence of test cases correspond to the sequence of statements in the specification for the unit under test.

Example:

If Independent, Proprietary, and Non-Ohio Colleges and Universities Degree/Certificate Earned (PD) Delete Switch is Not Y or N

Write Error 013 on edit report file

Test Case 1: Input: Delete Sw = Y, Returns No Error

Test Case 2: Input: Delete Sw = N, Returns No Error

Test Case 3: Input: Delete Sw = Q, Return Error 013

2. Path Analysis: TC "Path Analysis" \f C \l "4" It can be applied at two levels. One level is called white-box testing which is code-based and happens usually during unit test as described previously. The second level is functional or black-box level where the source code itself is not relevant because we want to test based on system requirements, not on their attempted implementation.

See Example in Appendix A.
3. Equivalence Partitioning & Boundary Value Analysis: TC "Equivalence Partitioning & Boundary Value Analysis" \f C \l "4"
See a black box example in Appendix B.
4. Error Guessing TC "Error Guessing" \f C \l "4" : It is not in itself a testing technique but rather a skill that can be applied to all of the other testing techniques to produce more effective tests. It is the ability to find errors or defects in the program under test by what appears to be intuition. It is a skill well worth cultivating since it can make testing much more effective and efficient. Some of the techniques used by testers are :
a. Knowledge about the program under test, such as the design method or implementation technology.
b. Knowledge of the results of any earlier testing phases (particularly important in Regression Testing).

c. Experience of testing similar or related systems (and knowing where defects have arisen previously in those systems).

d. Knowledge of typical implementation errors (such as division by zero errors etc)

5. Positive Testing TC "Positive Testing" \f C \l "4" : The process of Positive Testing is intended to verify that a system conforms to its stated requirements. Typically, test cases will be designed by analysis of the Software Requirements Document. The process of Positive Testing must be performed in order to determine if the application under test is “fit for purpose”, and where the application will be delivered to a customer, the process is likely to be a compulsory aspect of contractual acceptance.

6. Error Handling (Functional Negative tests): TC "Error Handling (Functional Negative tests)" \f C \l "4" Negative functional testing involves exercising application functionality using a combination of invalid inputs, unexpected operating conditions and other "out-of-bounds" scenarios. The purpose is to verify that the system handles these errors properly. For example, in an HTML form, the tester would intentionally enter numeric data into an alpha field to verify that an appropriate error message is displayed to the user, both at the browser level and at the server level. In an edit program, the tester would attempt to submit data that is outside of the expected range to verify that the edit is working and an error code is generated.

Example:

 Edits - For an ‘025’ edit (Year of Birth is not Numeric or ‘UNKN’) in a data submission edit, the tester would attempt to submit a character string like ‘XXXX’ to verify the error is flagged.

3. Smoke Testing: TC "3. Smoke Testing" \f C \l "2"

Sanity Testing or Smoke Testing - typically an initial testing effort to determine if a new software version is performing well enough to accept it for a major testing effort. For example, if the new software is crashing systems every 5 minutes, bogging down systems to a crawl, or corrupting databases, the software may not be in a 'sane' enough condition to warrant further testing in its current state.

Smoke Testing encompasses a basic, initial overview test to insure that an application is stable enough to continue programming or to proceed with more rigorous forms of testing. A failed Smoke Test would result in sending the application back to programming staff for review.

PM Solutions adds the following characteristics:

· Determining the software application system is minimally stable

· Determining that all screens, buttons and objects display

· Sanity checks on production environment for system critical processes.

Example:

1. Prior to proceeding with large scale testing of the HEI and Ohio Science and Engineering Alliance download web application (https://qry.regents.state.oh.us/cgi-test/alliance_report_cgi), a simple smoke test was conducted that insured that the following was within expectations:

a. Verified per the specifications that all necessary buttons and selection windows were visible.

b. Verified per the specifications that a selection of Enrollment and Degree data did not result in a catastrophic failure.

c. Ran several downloads utilizing different query criteria to determine that the system was minimally stable.

d. Verified that existing HEI data in all effected tables were not being corrupted by the download process.

e. Timing the download and monitoring other HEI processes to insure that the download was not effecting other response times.

When creating Smoke Testing, use the following points to aid your test design:

1. Verify that all necessary features, buttons, drop down windows, etc are displayed and functional.

2. Verify that multiple runs of the application do not result in immediate errors or catastrophic failures.

3. Verify that tables utilized by the application are not immediately corrupted by initial runs of the application.

4. Time runs of the application and monitor other HEI processes to insure that response times are not severely impacted.

4. Control Testing: TC "4. Control Testing" \f C \l "2"
Control Testing is important to ensure that the software controls are in place and working properly to maintain system integrity. Control Testing entails testing an application’s audit trail and event logging. The objectives of control testing are to ensure accurate and complete data, authorized transactions, maintenance and accurate audit trails, etc. In essence, Control Testing is a test of the system within a system.

Examples of HEI features that often require logging and the creation of an audit trail are as follows:

· Download interfaces and queries should be logged to track the dissemination of data and in the event that an error is found in the download logic.

· Financial Aid transactions: In the OIG project, any changes made internally by the users to the data received from the federal government is logged. Changes made to the eligibility status, SSN, reasons for the changes, if an automated program (like the IG or IA) is making the changes then that program name is identified along with date and time of the change, etc.
· Intersystem data transfers: As an example, in the HEI/NSC project, HEI tracks the type of file sent to NSC (whether EdEvaluator or Student Load Notification), a list of students sent to NSC, time that the file was sent to NSC, time when the response was received from NSC, whether a student should be removed from the term-by-term submissions to NSC, etc. This logging of data insures that HEI receives the full data needed for its users and that any interruptions in the data transfer may be picked up once again at the point of interruption.
Control Testing should ensure that a wide enough collection of data elements are collected to answer any question that might arise concerning the application. It must also verify the integrity of the data being collected.

5. Integration Testing: TC "5. Integration Testing" \f C \l "2"
Integration testing is an interim level of testing that occurs between unit testing and system testing, and where sub-assemblies or functional groupings of components are tested. The objective of integration testing is to ensure that components link and work together, and to focus in on the effectiveness of functional interactions and compatibility at the interfaces.

Integration testing is performed to ensure that the units operate correctly when they are combined together, as parts in a working (but incomplete) application.

Examples:

1) Consider the process of assembling and testing an automobile. A modern car has approx. 30,000 discrete components that go into its manufacture.

a. Prior to the start of the assembly process each individual component has to be inspected. For instance if one component (a screw, say) is faulty, it may be difficult or impossible to detect the fault later and this screw may be used in a critical subsystem like brakes. Therefore unit inspection is delegated to the parts manufacturers for certification.
b. While the unit test occurs at 0% level of integration, i.e. before assembly begins, the other extreme is the full system test which occurs after the assembly is complete, i.e. at 100% integration. With a car, system test may consist of taking the car for a test drive.

c. Integration testing is any interim level of testing that occurs during the assembly process, when the automobile is more than 0% assembled but less than 100% assembled. For example testing the carburetor subassembly once it has been put together is an example of integration test.

2) HEI Edit and Load System: There are many individual processes which are common to all the files that we have. For instance we would create a submission header, message, insert, update, delete and sort files for each File an institution would submit. Then the method of displaying edit errors or sending load emails etc is common to all submissions. All these components are linked through an interface – the ‘Data Input Site’. Therefore all these individual programs have needed unit and functional testing in themselves. And have also needed integration testing to ensure all components work together as an integrated system too.
3) OIG – Payment and Refund Process: These are two separate files which receive OIG’s payment (IG) and Refund (IA) information from OH and PA schools. But the method of handling those students who reach their maximum eligibility (lifetime limit of 15 units) for receiving OIG funds is similar to both the files. So a common program was created to handle this function. Therefore unit and functional tests needs to be conducted to ensure that IG and IA work as specified. In addition, an integration test needs to be conducted that ensures IG, IA and the Max eligibility programs work as expected as well. This is a simpler form of integration testing.
5.a. Intersystem Testing: TC "5.a. Intersystem Testing" \f C \l "2"
Intersystem Testing is a form of Integration Testing at the macrocosmic level. It may also be known as “Systems Interface” or “Interoperability Testing”. Intersystem Testing involves the following steps excerpted from VIII.8 of the “Systems Testing and Quality Assurance” manual:

· Testing is planned as part of the overall high-level system design.

· Testing occurs as critical components (major systems) are released from individual system tests.

· Testing is completed for the next scheduled release of the integrated set of systems.

· Upstream/downstream testing is a variation, where the purpose is to test the data feeds in and out of a linked series of systems.

Interoperability testing activities, sometimes referred to as intersystems testing, assess whether a software product will exchange and share information (interoperate) with other products. Interoperability testing activities are used to determine whether the proper pieces of information are correctly passed between applications. Thus, a major benefit of interoperability testing is that it can detect interoperability problems between software products before these products are put into operation. Because interoperability testing often requires the majority of the software product to be completed before testing can occur, it is used primarily during the integration and system testing stages. It may also be used heavily during beta and specialized testing stages (NIST Report Dept Commerce.pdf, Page 2-10).

Interoperability testing usually takes one of three approaches. The first is to test all pairs of products. Consumers are in a poor position to accomplish this because they are unaware of the interoperability characteristics across software products and across software firms. This leads to the second approach—testing only part of the combinations and assuming the untested combinations will also interoperate. The third approach is to establish a reference implementation and test all products against the reference implementation. For example, a typical procedure used to conduct interoperability testing includes developing a representative set of test transactions in one software product for passage to another software product for processing verification (NIST Report Dept Commerce.pdf, Page 2-11).

HEI programming typically does not involve intersystem programming. Our applications are generally aimed at data dumps rather than transactional exchanges between HEI and other party systems.

Example:

An example of Intersystems Testing may be found in the HEI/National Student Clearinghouse (NSC) Collaboration. HEI sends thousands of student first names, last names and dates of birth records to NSC for the purpose of deriving a national listing of higher education enrollments. Testing at this level entailed the creation of test files to be submitted to NSC and working through any problems in the transmission and receiving process.

For further information and internally scaled examples of Intersystems Testing, please reference the section entitled “Integration Testing”.

6. Parallel Testing: TC "6. Parallel Testing" \f C \l "2"
Related to regression testing in that it involves testing modifications to existing systems, parallel testing is used to verify that the application under test is still working properly after modification. For this type of test, two versions of the system are operated. The first is the system before the change; the second is the system with the change. The operation of both systems are compared to verify that the modifications have not inadvertently introduced errors. A benefit of this test type is that the original, unmodified system is readily available in the event that errors are detected in the modified system. Alternatively, this testing method can be very expensive to conduct since it involves the operation of two completely separate systems concurrently. This can include separate programs, databases and hardware.

Examples:

 HEI has most recently used this test type during the OIG conversion. The mainframe system was operational parallel to the HEI version for a period of time. This allowed for comparison between the existing mainframe system and the new HEI system and ensured that the HEI system was functioning properly.

7. System Testing: TC "7. System Testing" \f C \l "2"
System Testing is a series of different tests whose primary purpose is to fully exercise the computer-based system. Although each test has a different purpose, all work to verify that all system elements have been properly integrated and perform allocated functions.
1. Error Recovery: TC "Error Recovery" \f C \l "4" Recovery testing is a system test that forces the software to fail in a variety of ways and verifies that recovery is properly performed. At the program level, this can mean, in the event of an error, verifying that any open transactions are properly rolled back and the database is returned to the appropriate state and any program files are properly closed, deleted or returned to their original state. At the system level, this means verifying that appropriate back-up systems are in place that enables the system to be returned to a previous correct state in the event of a failure.

Examples:

Data Entry Screens – For HEI web pages which insert, update or delete data in a database, adequate measures should be taken to ensure that database transactions are rolled back when an error occurs. When testing, it may be necessary to force an error in the SQL under test since any conditions which would cause an error should be screened out prior to the SQL’s execution.

2. Security TC "Security" \f C \l "4" : Any computer system that manages sensitive information can be a target for improper or illegal penetration. Security testing attempts to verify that protection mechanisms built into a system will in fact protect it from improper penetration. Security testing can be designed, implemented and executed within any testing phase, but it is typically done during system testing and user acceptance testing.

Examples:

To test the security of web pages, testers can impersonate a user class to verify that only the appropriate access is provided.

When creating applications for internal users, consider giving individuals access to only functions that they may need and not all the functions that are available in that application. This would help in controlling the security for sensitive functions.

3. Stress Testing TC "Stress Testing" \f C \l "4" : Stress testing ensures that the system can perform acceptably under peak loading, or, if the peak loading is exceeded and the system does fail, that the recovery mechanisms work. A stress test deliberately pushes a system beyond its limits by consuming scarce system resources.

Examples:

 Writing to a data base that is full, pushing any counters above their maximum values, or sending a massive amount of data through a system. After having benchmarked all of a systems maximum performance characteristics, a tester may try to tax or exceed all of them concurrently. Stress testing often involves the creation of the worst case scenario imaginable.

If the system fails, can it recover gracefully? All systems should have tested functionality that demonstrates that it acceptably recovers from catastrophes.

Another element of stress testing would be the monitoring of ever increasing workload demands to the point where the system breaks. The breaking point should be logged to show how and where the system fails. This information may be used in subsequent projects to develop a more hardy system.

Stress testing is different from performance testing by the fact that stress testing will often utilize erroneous data to create its test environment. For the most part, however, stress testing is conducted with error free data.

Questions to address in Stress Testing:
Per Chapter VI entitled “Evironmental Testing” from the HEI “Systems Testing and Quality Assurance” manual, the following questions should be addressed in Stress Testing:

· What are the design limits or thresholds for the system?

· What is the expected and acceptable behavior for recovery mechanisms?

· How can I organize the performance characteristics and workload to stress the system?

· What test environment (hardware, network and software) modifications are needed in order to force the system to be stressed?

There are several similar testing options loosely related to Stress Testing. These options include:

· Destructive Testing which attempts to break a system in order to find errors. Within Destructive Testing, negative tests are run to discern whether error messages or error response processes are kicked off.

· Degraded Mode Testing determines what functionality is available within a system even if not all portions of a system are operational.

· Duration Testing is conducted to see if errors are produced over a period of time (typically 72 hours).

4. Performance Testing TC "Performance Testing" \f C \l "4" : Performance Testing is designed to test run-time performance of software within the context of an integrated system. This testing occurs throughout all steps in the testing process. Even at the unit-level, the performance of an individual module may be assessed as white-box tests are conducted. However, it is not until all system elements are fully integrated that the true performance of a system can be ascertained.
First, the term performance needs to be defined for various test situations – i.e. what the objectives are and what needs to be measured in the test. Usually it is a weighted mix of throughput, response time and availability. The requirements can be stated as hard numbers (the process must be completed within a specified deadline) or as probabilistic numbers (90% of the queries should be answered in 1 minute or less but no one transaction has a hard upper time limit).
Example:
The OIG Customer Service Query which is used by SGS to answer queries over the phone is an example of an on-line system which requires a very short response time since the users are dependant on the query (i.e. waiting idle for the response). The response time is about 30-45 seconds. Compare this to other HEI queries which do not have dependant users (i.e. users that can juggle multiple tasks while running the query).
8. Regression Testing: TC "8. Regression Testing" \f C \l "2"
A regression test is performed after a modification has been made to an existing system. It is intended to verify that errors have not been inadvertently introduced by the change and that the whole system works as intended.

Regression testing requires that a comprehensive test bed be available throughout the life of the system. The test bed should be maintained to keep it aligned with the system as the system evolves. The best time to build the test bed is during system development. As test cases are developed, they can be added to a reusable test case library which can be used for regression testing during the life of the system.

Examples:
 Edit/Load programs – Many of the HEI edit/load programs have an existing test pack that can be used for regression testing. For example, the CN edit program has a collection of submission files which contain tests for all of the edits in the program. There is also a SQL script which is used to set up the database environment prior to submission. When a change is made to the source code, these submissions can be executed to confirm that the program continues to work as expected. Below is an example of the Table of Contents for a test package:

	CN Edit and Load Test Package - Table of Contents (created 5/10/00)

--

A. Paper Edition

1. CN Edit and Load Test Package TOC (this document)

2. Data Submission Document (rev. 1/5/00)

3. Edit and Load Specifications (rev. 1/13/00)

4. SQL Scripts for resetting database:

a. CN Edit Test Script (for AU01,AU02,WI03)

b. CN Load Test Script (for AU04)

5. CN Edit and Load Test Tables

6. Any pertinent database rows that apply to test submission

7. CN Edit and Load Submission Files

8. CN Edit and Load Reports (.RPT and .RLD)

B. Electronic Edition

1. CN Edit and Load Test Package TOC.txt (this document)

2. SQL Scripts for resetting database:

a. CN Edit Test Script.SQL (use for AU01,AU02,WI03)

b. CN Load Test Script.SQL (use for AU04)

3. CN Edit and Load Test Tables

a. CNMIAM1996AU01 TEST.xls

b. CNMIAM1996AU02 TEST.xls

c. CNMIAM1996WI03 TEST.xls

d. CNMIAM1996AU04 TEST.xls

4. CN Edit and Load Submission Files

a. CNMIAM1996AU01 (edit)

b. CNMIAM1996AU02 (edit)

c. CNMIAM1996WI03 (edit)

d. CNMIAM1996AU04 (load)

 Queries: During the development of the Alliance query, an SQL script was constructed that set up the database environment for the defined test cases. The 3 reports were generated and the output verified. When changes are requested in the future, the SQL script can be executed to set up the predefined test cases, the 3 reports generated and the output compared to the previous output to verify that the unmodified portions of the program still operate as expected.

9. Operations Testing: TC "9. Operations Testing" \f C \l "2"

Excerpted from Pages VI.50 through VI.53 of HEI’s “Systems Testing & Quality Assurance Techniques.”

Documentation Testing is the review of accuracy and readability of user manuals, including tutorials and on-line help, and the technical documentation for a system. Documentation is sometimes treated like an afterthought in the obsessive rush to build and deliver the system. However, the usefulness of the user documentation can have a major effect on product acceptance and customer satisfaction. The usefulness of the systems technical documentation can have a major effect on product maintainability.

Documentation Testing can occur at any of three levels of depth or intensity:

1. A “read only” test, where the documentation is reviewed for clarity and accuracy without executing tests of the system.

2. A hands-on test of the help facility, error messages and tutorials, to evaluate their accuracy and usefulness.

3. A functional test, where test cases are identified based on the documentation and executed, in order to check that the system actually works the way it is documented.

The levels of severity for Documentation Testing differ from the levels for software testing. For documentation, a typical series of severity levels are as follows:

1. Severe: The process description is omitted or the process does not work as described in the documentation; cannot complete the procedure as described.

2. Moderate: The documentation is incorrect and the defect is not trivial, but the users can deduce from the document what the correct procedure should be and can execute this procedure. This will slow the user down, but not stop him or her in using the system.

3. Minor: The defect in the documentation causes a minor inconvenience, or is not technically incorrect but is awkwardly worded, and is not expected to generate a call to the support group for the system.

Please refer to the Appendix G for an approach to operations testing checklist.

10. User Acceptance Testing: TC "10. User Acceptance Testing" \f C \l "2"

Independent test performed by the users or QA, usually after system test, prior to accepting the delivered system. This testing has more of a client or user orientation than a technical, inward looking orientation and tends to be more demonstrative (i.e. emphasis is on demonstrating that the system works) than comprehensive and destructive.
Scope of acceptance test usually includes checking the user preparation and readiness for system installation, database conversion, performance etc. A final test of the system acceptability, prior to transition to actual business use of the system.

In HEI, this could be viewed as a Pilot Test where a representative group of end users are testing the system before its final release. Within an HEI Pilot, users are normally provided with training manuals and instructions concerning the interface.
Excellent examples of these may be found at L:\HEI-General\HEI Processes\WIA Administration\Documentation\wia_guide.pdf and L:\HEI-General\HEI Processes\WIA Administration\Documentation\wia_batch_instructions.pdf.
In addition to providing user documentation that clearly shows the user how the system should function, there should also be some means of gauging and documenting user acceptance. This may be done by creating a feedback template to be utilized by all Pilot users or may be concretized and documented in a group setting during a final Pilot Test meeting.
Testing Web Applications TC "Testing Web Applications" \f C \l "1"
Gray Box Testing Approach: TC "Gray Box Testing Approach" \f C \l "2"
Black box testing focuses on software’s external attributes and behavior. Such testing looks at an application’s expected behavior from the user’s point of view. White box testing tests software with a tester’s knowledge of internal data structures, physical logic flow and architecture at the source code level.

Gray box testing incorporates elements of both black box and white box testing. It considers the outcome on the user end, system specific technical knowledge, and operating environment. It evaluates application design in the context of the interoperability of system components. This approach is integral to the effective testing on web application because they comprise numerous components, both software and hardware. These components must be tested in the context of system design to evaluate their functionality and compatibility.
User Interface Tests TC "User Interface Tests" \f C \l "2"

User interface design testing evaluates how well a design takes care of its users, offers clear direction, delivers feedback and maintains consistency of language and approach. Subjective impressions of ease of use and look and feel are carefully considered in UI design testing. Issues pertaining to navigation, natural flow, usability, commands and accessibility are also assessed in UI design testing.

Topics to consider when evaluating design:
I. User interaction (data input)

II. Data presentation (data output)

I. User interaction (data input): TC "I. User interaction (data input) " \f C \l "3"
Users can perform various types of data manipulation through keyboard and mouse events. User interface (UI) controls include form elements like radio buttons, check boxes, command buttons, scroll bars, pull down menus, text fields etc. Some of the dynamic UI objects include scripts, Active X controls, java applets, etc.

Some common errors that can be looked for:
· The default state of UI controls is incorrect.

· Poor choice of default state.

· The updated state of UI control is incorrect.

· The default input value is incorrect.

· Poor choice of default value.

· The updated input value is incorrect.

· The most commonly used action button is no the default one.

· The form or dialog box is too big or too small under minimum support display resolution (e.g. 800x600)

· Set View Text Size to Largest and the Smallest to see how each setting may affect the UI.

· Check for the existence and correct descriptions of ALT (mouse over) attributes.

· Run the application on different browsers to ensure it works as expected.

· Invalid inputs are not detected and handled at client side

· Invalid inputs are not detected and handled at server side
· What effect does pressing the enter key have on the page?

· Check the tab order of form elements to ensure easy navigation through keyboard
· Please see Appendix D for Input Validation Checklist
Browser & Operating System Compatibility: TC "Browser & Operating System Compatibility" \f C \l "4"
HEI Policy (Aug 24, 2004):
 TC "HEI Policy (Aug 24, 2004)" \f C \l "4"
All new applications should be compatible with the latest versions of BOTH Netscape and Explorer (not just one or the other). In addition, if the application is for an audience that involves the financial data reporters, it should also be compatible with Netscape 4.7.

When the entire HEI site is Explorer friendly we will then leave behind Netscape 4.7. After that, we may ask our audience for feedback regarding whether we need to continue to be Netscape friendly.

Mac Compatibility: Currently HEI is not tested against Mac with the exception of the OAS high school application form. In the future we may begin testing against Mac. For now, we will only test against Mac if we have a specialized audience that requires it.

Please see Appendix E for Browser & Operating System Compatibility Test Matrix.

Navigation Methods:
 TC "Navigation Methods " \f C \l "4"
Navigation methods dictate how users navigate through a program – from one UI control to another within the same page (screen, window or dialog box) and from one page to the next. User navigation is achieved through keyboard and mouse.

Some questions that can be asked:
· Is the application’s navigation intuitive?

· Is accessibility to commonly used features and data consistent throughout the program?

· Can users always tell where they are in the program and what navigation options are available to them?

· How well is the information presented to the user?

· Do navigation conventions remain consistent throughout the application (navigation bars, menus, hyperlinks etc)?

· Examine the application for consistent use of mouse-over pop-ups, clicks etc. Do the results of these actions offer differing results from one screen to the next?

· Do the keyboard alternatives for navigation remain consistent throughout the application?

· If the user clicks a submit button numerous times while he or she is waiting for server response, will the transaction erroneously be submitted numerous times?

Feedback and Error Messages: TC "Feedback and Error Messages " \f C \l "4"
Some errors to look for:
· Displaying incorrect error message for the condition.

· Missing error messages.

· Poorly worded, grammatically incorrect and misspelled errors.

· Error message is neither specific nor does it offer a plausible solution.

· Similar errors are handled by different error messages.

· Unnecessary messages distract users.

· Inadequate feedback or error communication to users.

· Does the application allow users to recover from error conditions or must the application be shut down?

II. Data Presentation (Data Output) TC "II. Data Presentation (Data Output)" \f C \l "3"
In web outputs there can be at least three types of potential errors

1) data errors – incorrect data in records caused by write procedures

2) database query errors

3) data presentation errors.

A data error or database query error will manifest itself in all forms of output whereas a presentation error may be linked to a specific style of output requested.

Functional Tests TC "Functional Tests" \f C \l "2"
Functional testing is a broad category of testing. It includes a variety of testing methods such as

1) FAST - Functional Acceptance Simple Tests

2) TOFT - Task Oriented Functional Tests

3) FET – Forced Error Tests

4) Boundary – Boundary Condition Tests

5) Exploratory – Exploratory Testing

1) FAST - Functional Acceptance Simple Tests : TC "FAST - Functional Acceptance Simple Tests " \f C \l "3"
Does each input and navigational tool work as expected?

This test is run to check that key features of the program are appropriately accessible and functioning properly. This entails checking for the existence of UI (user interface) controls on each page, window or dialog box; checking if the default state is as intended etc

Things to check for in FAST include:
· Links such as content links, image map links etc.
· Basic controls such as backward and forward navigating, other UI controls and content refreshing checks.

· Action command checks such as add, remove, update and other types of data submission.

· Features such as log in / log out, email notification etc.
· Incorrect content in automated email reply.
· No validation in text fields.
2) TOFT - Task Oriented Functional Tests : TC "TOFT - Task Oriented Functional Tests " \f C \l "3"
It consists of positive test cases that are designed to verify program features by checking the task that each feature performs against specifications. Each feature is tested for:
· The validity of the task it performs with supported data conditions under supported operating conditions

· The integrity of the task’s end result
· The feature’s integrity when used in conjunction with related features
3) FET – Forced Error Test : TC "FET – Forced Error Test " \f C \l "3"
It consists of negative test cases that are designed to force a program into error conditions. The objective is to find any error conditions that are undetected and / or mishandled.

Guidelines:
· Check that the error-handling design and error communication methods are consistent.

· Check that all common error conditions are detected and handled correctly.

· Check that the program recovers gracefully from each error condition.

· Check that the unstable states of the program (e.g.: an open file that needs to be closed, a row in the database that is partially written or not completely deleted as it should have, or an entry in the table that is partially updated etc) caused by the error are also corrected.

· Check each error message to ensure that –

· Message matches the type of error detected.

· Description of the error is clear and concise.

· Message does not contain spelling or grammatical errors.

· User is offered reasonable options for getting around or recovering from the error condition.

A complete list of error conditions is often difficult to assemble. Some ways of compiling a list of error conditions –

· A list of error messages from programmers

· Use information from specifications

· Using your experience.

4) Boundary Condition Tests and Equivalent Class Analysis : TC "Boundary Condition Tests and Equivalent Class Analysis " \f C \l "3"
Boundary tests are similar to FETs in that they are the boundaries of each variable.

For example, in testing an online form, a text field has a character limit from 2 – 7 characters. Is it working as expected? Does the field accept 2, 3, 6, 7 characters? What about 1 or 8? Can it be left blank? (Refer the Unit and Functional testing design for more details)

5) Exploratory Testing : TC "Exploratory Testing " \f C \l "3"
It is a process of examining the product and observing its behavior as well as hypothesizing what its behavior is. It involves executing test cases and creating new ones as information is collected from the outcome of previous tests.

Database Tests TC "Database Tests" \f C \l "2"

Database testing includes the testing of actual data (content) and database integrity – ensuring that data is not corrupted and that schemas are correct; as well as the functionality testing of the database applications (e.g.: Transact SQL components)

Two common classes of problems caused by database bugs are data integrity errors and output errors.

At the programming level, a data integrity error is any bug that causes erroneous results to be stored in fields, records, tables etc. This, for the user would translate to, wrong SSN, missing record etc.

Output errors are caused by bugs in the data retrieving and manipulating instructions that occur, although the source data is correct.

Some of the common errors include:
· NULL is passed to a record field that does not allow NULL.

· Mishandling single quote (‘) in a string field.

· Mishandling comma (,) in an integer field.

· Mishandling wrong data type. E.g.: Writing $500 where 500 is expected or

Writing 500,000 where expected value is 500000

· A value is too large for the size of the field.

· A string is too long for the size of the field.

· Invalid or misspelled field, column or table name.

· Missing opening or closing parenthesis before the keyword.

· Errors in Committing, Rolling back Transactions.

Appendix A

Black Box Path Analysis Example
(Black Box Path Analysis Example)" \f C \l "1"

[image: image2.jpg]Identifying Test Cases

PATH ANALYSIS
A Black Box Example

The following postal regulation determines postage surcharges.

The postal regulation provides the functional description of the software that calculates
postal surcharges in compliance with the regulation.

This regulation applies only to parcels (not other types of postal items), and only to parcels
sent from the United States of America to countries in South America.

For parcels which are mailed to South America between December 1 and December 24 of
each year, the following surcharges will be applied in addition to the standard postage:

Country Weight Surcharge
(in pounds)

Argentina -— $11

Brazil > 33 321

Brazil <33 $17

How would you test this software?

.16

[image: image3.jpg]Identifying Test Cases

PATH ANALYSIS
Black Box Example (Continued)

Flow chart for this postal regulation:

[image: image4.jpg]Identifying Test Cases

TESTABLE PATHS
For This Black-Box Example

Assuming that the flow chart on the prior page is in fact a correct model of the postal regulation
(which is always a good question to ask), according to this flow chart there are eight testable paths

or conditions:

(1) Submit a postal item which is not a package (e.g., is a postcard), and verify that no surcharge
is applied by this regulation.

(2) Submit a parcel which is not being sent to South America (e.g., one addressed to Australia),
and verify that no surcharge is applied.

(3) Submit a parcel addressed to South America outside of the Christmas season (e.g., in July),
and verify that no surcharge is applied.

(4) Submit a parcel addressed to Argentina during December 1 through 24, and verify that a
surcharge of $11 is added to the standard postage amount.

(5) Submit a parcel weighing over 33 pounds and addressed to Brazil during December 1 through
24, and verify that a surcharge of $21 is added to the standard postage amount.

(6) Submit a parcel weighing less than 33 pounds and addressed to Brazil during December 1
through 24, and verify that a surcharge of $17 is added to the standard postage amount.

(7) Submit a parcel addressed to a South American country other than Argentina or Brazil,
during December 1 through 24, and verify an appropriate action is taken. This condition was
not addressed in the specification (the postal regulation), and consultation with a subject
matter expert and an authority is needed, to determine what the appropriate action is.

(8) Test that when an input item has been processed:

(@) if there is another input item to be processed, the system returns and initializes
conditions correctly and is ready for the next input item, or

(b) when there is no next input item, the system shuts down in a safe and orderly manner.

Are there any tests missing from this list? (Hint: what would happen if you mailed a package from
outside the United States? The flowchart is assumed to correctly represent the functional logic, but
in this case there is an omission in the flowchart which leads to a test condition being overlooked.)

118

[image: image5.jpg]Identifying Test Cases

PATH ANALYSIS
Black Box Example (Continued)

Black-box path analysis is only as good as our ability to come up with the right decision model.

There are the following omissions and flaws in the lists of tests on the prior page:

o]

Mail a package with U.S. stamps to South America during the holiday season, but from
outside the United States. Would it be reasonable to take a package with U.S. stamps to a
Canadian post office, for example, and expect them to collect the surcharge on behalf of the .
U.S. government?

And exactly what is meant by the term "United States"? Just the 50 states, or territories fike
Guam and the U.S. Virgin Islands? Euro Disneyland (which is outside Paris)?

Mail a package to Brazil weighing 33 pounds. It is not clear will should happen if we mail
a package weighing exactly 33 pounds to Brazil. Ideally, the specification should be revised
to define the expected outcome before we test.

Mail packages to other South American countries, in addition to Argentina and Brazil. The
problem is the postal regulation itself is fuzzy here. The term “South America” is used but
surcharges are defined for only two countries, Brazil and Argentina. Does this mean we can
simply assume that the surcharge for all other South American countries is $0.00? Or does
it mean we have an incomplete copy of the postal regulation?

Ideally, the regulation should contain a list of the specific countries that are defined to
constitute South America. For example, everybody agrees that Paraguay is clearly part of
South America. (It is land-locked and surrounded by other South American countries.) But
what about Panama? What about the Falkland Islands (as the British call them), or the
Malvinas (as the Argentines call them), which are the same islands? According to British
maps, these islands are just a little way off the Welsh coast. According to Argentine maps,
the islands are virtually in the delta of the River Plate. These counties fought a war over the
islands in the 1980s.

Mail a package with a weight of zero or less. According to the postal regulation, surcharges
may still apply, but this mat not be correct. (The postal regulation should be modified to
address this situation. Simply saying that it cannot happen is not sufficient -- what about
helium containers?.)

IIL.19

[image: image6.jpg]Identifying Test Cases

PATH ANALYSIS
Black Box Example (Continued)

These items also are not handled correctly:

o The term "Holidays" on the flowchart is fuzzy, and could mean almost anything. Almost
every day of the year is a holiday somewhere in the world. Precision has been lost in the
transfer of information from the postal regulation to the flowchart.

o The list of test cases appears to use the words "parcel” and "package" interchangeably. Can
we blithely assume that they mean the same thing and that the writer used the terms sloppily?

The list of test cases asks the tester to verify that the amount of postage charged is equal to expected
surcharge added to "the standard postage amount”. This statement is vague and dangerous if the
tester does not know what the standard postage amount is for the package being used in a test.

The postal regulation says nothing about processing more than one package, so test cases 8(a) and
8(b) are testing for functionality beyond what the specification calls for. In this case, it seems quite
reasonable to assume that the software should not be designed to process just one package, but
should instead contain a feedback loop.

In many situations, testing beyond the stated functionality can get the testers into trouble with the
developers or the clients. The assumption that multiple packages need to be processed needs to be
checked out with a subject matter expert or with the final authority on functionality decisions.

With the flowchart, we have made assumptions about the internal structure of the software and have
used these assumptions in developing the test cases. Since this is a black-box test, the assumptions
about the internal structure are speculative.

For example, imagine that the programmer who developed this application knows the author of this
book personally. Suppose also that the input data for each postal item to be processed includes the
recipient's name as well as the address (presumably the address is needed on input, to determine what
surcharge to apply).

Based on what the programmer thinks of the author, he actually has constructed the software in the
following manner:

Hr.20

[image: image7.jpg]Identifying Test Cases
PATH ANALYSIS

Black Box Example (Continued)

Last name
is equal to
YCOLLARD"?

N Normal
Process

Apply $10,000 surcharge

How would we test for this "special" processing of packages with the name Collard? The simple
answer is that we would not, because we could not see this test case with black-box path analysis
based on the postal regulation. (At the white-box level, we could see the deviant path because we

can examine the code.)

We know that the number of defects introduced into systems by deliberate fraud is just a small
percentage of all defects. Programmers can make inadvertent mis-connections in their code, though,

and the number of possible mis-connections may be too numerous to count, let alone test.

Actually, graph theory does give us an upper limit on the number of possible connections among a

given number of nodes, but these numbers are so ugly you do not want to see them,

111.21

[image: image8.jpg]Identifying Test Cases

ADVANTAGES OF BLACK-BOX PATH ANALYSIS

Powerful: the relatively small handful of path tests finds many and probably most of the
defects that an exhaustive test with many, many combinatorial test cases would find. (These
combinatorial test cases are just combinations and permutations of the basis path tests).

Defines equivalence test cases (paths) fairly easily.

Easy to apply if the specifications are presented in the forms of logical flowcharts, decision
tables, state-path diagrams or some equivalent decision-based form.

Useful method for "testing the basics" before moving on to more complex, multi-path or
event-driven combinations of situations.

Tools are available for automated black-box analysis, but they most observers consider them
to be immature (more toys than working tools). They require the functional specifications
to be documented, complete, correct and up to date -- a tall order in many shops. They also
currently require that the specifications be documented (or re-written) in restricted, somewhat
unnatural languages.

See Volume 2, Chapter XIX for further discussion of these automated tools, under the
heading "Test Script/Case Generators".

HI1.22

Appendix B
" \f C \l "1"

Equivalence Partitioning & Boundary Value Analysis Example

(Ref: Software Testing in the Real World – improving the process – Edward Kit)

Functional Design Specification for Golfscore

Golfscore is a program which calculates the scores of the participants in a golf tournament which is based on the following assumptions and scoring rules:

Assumptions:

1. The number of courses played can be from 1 to 8.

2. The number of participating golfers can be from 2 to 400.

3. Each golfer plays each course once.

4. A golfer’s tournament score is the sum of his/her scores on each course.

5. Each golf course has 18 holes, and par for each hole is 3, 4, or 5.

Scoring rules for each hole:

Strokes

Score

Over par

0

Par

1

1 under par

2

2 under par

4

>2 under par

6

Input

Input to Golfscore is a formatted text file containing the following records, in sequence:

1. Course Records. One record for each golf course. Each record contains the name of the course and the par for each of its 18 holes.

Column 1:

Blank

Columns 2-19:

Course name

Columns 21-38:

Par for holes 1-18 (par is an integer 3, 4, or 5)

2. Delimiter Record. Denotes the end of the course records.

Column 1:

Non-blank

Columns 2-60:

Blank

3. Golfer Records. One record per golfer per course (in any order). Each record contains the name of the golfer, the name of the course, and the actual number of strokes taken for each of the 18 holes.

Column 1:

Blank

Columns 2-19:

Course name

Columns 22-39

Golfer name

Columns 41-58

Number of strokes taken for holes 1-18

(per hole, number of strokes is a single, non-zero digit)

4. Delimiter record. Denotes the end of the golfer records.

Column 1:

Non-blank

Columns 2-60:

Blank

Output

Golfscore produces the following output reports, showing:

1. The names of the golfers, their scores for each course, their total scores and their final rank in the tournament, sorted in descending order of total score.

2. The same as report 1 but sorted alphabetically by golfer name.

3. Per course, the same as report 1, but sorted in descending order of score on that course.

Each report contains one output record per golfer.

Worksheet

	External Input Conditions
	Valid Equivalence Classes
	Invalid Equivalence Classes

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

There are many solutions to this exercise. One solution is presented at the end of this document.

Boundary Value Analysis: Using the same functional design specification for Golfscore described above, make a list of boundary values to be tested. Be sure to consider both input and output conditions. A possible solution is given at the end of this document.

This page has been left blank intentionally

One solution to the Equivalence Partitioning example:
	External Input Condition
	Valid Equivalence Classes
	Invalid Equivalence Classes

	Number of course records
	4
	<1, >8

	Course name in course record
	Non blank
	Blank

	Par in course record
	Integer
	Not an integer

	Integer par in course record
	4
	<3, >5

	Number of golfers
	20
	<2, >400

	Number of golfer records per golfer
	=number of courses
	Not equal to the number of courses

	Course name in golfer record
	Non blank
	Blank

	Non blank course name in golfers’ records
	Defined in course records
	Not defined in course records

	Golfer name in golfer record
	Non blank
	Blank

	Strokes in golfer record
	Non zero digit
	0, non digit

	Delimiter record
	Non blank in column 1
	Blank in column 1

Boundary Value analysis exercise solution

Input Conditions

1. empty input file

2. no course records in input file

3. 1 course record

4. 8 course records

5. 9 course records

6. blank course name in course record

7. 1-character course name in course record

8. 18-character course name in course record

9. for the first (1) and the last (18) holes only

a. non integer for par in course record

b. par=2 in course record

c. par=3 in course record

d. par=5 in course record

e. par=6 in course record

10. column 1 is blank in delimiter record

11. column 1 is non-blank in delimiter record

12. columns 2-60 are blank in delimiter record

13. columns 2-60 are non-blank in delimiter record

14. no golfer records in input file

15. 1 golfer

16. 2 golfers

17. 400 golfers

18. 401 golfers

19. Course name in golfer record defined by previous course record

20. Course name in golfer record not defined by previous course record

21. A golfer has golfer records for one less than the number of courses

22. A golfer has golfer records equal to the number of courses

23. A golfer has golfer records for one more than the number of courses

24. A golfer has two or more golfer records for the same course

25. 1-character golfer name in golfer record

26. 18-character golfer name in golfer record.

27. for the first (1) and last (18) holes only:

a. number of strokes is non-digit

b. strokes = 0

c. strokes = 1

d. strokes = 9

Output Conditions

Note: Some output conditions are redundant with input conditions (e.g. #14, 16, and 17) and do not need additional tests

28. all golfers receive the same total score

29. all golfers receive different total scores

30. a golfer receives a minimum total score (zero)

31. a golfer receives a maximum total score (6 times 18 number of courses)

32. per course, all golfers receive the same score on that course

33. per course, all golfers receive different scores on that course

34. per course, a golfer receives a minimum score on that course (zero)

35. per course, a golfer receives a maximum score on that course (6 times 18)

36. some, but not all, golfers receive the same total score (checking that the rank is correct)

37. the number of golfers is such that the report fits exactly on one page, with no room left over to accommodate another golfer (to make sure that an extraneous page is not printed)

38. the number of golfers is one greater than the number in test (37)

39. a golfer has a name that has the lowest possible values in the sort collating sequence

40. a golfer has a name that has the highest possible values in the sort collating sequence

Appendix C TC "Appendix C (Web Testing Checklist)" \f C \l "1" - Web Testing Checklist

Testing any web application form or a query that has been programmed

Testing Form Elements:
1. Check to make sure all the various elements in the form like text boxes, select boxes, radio buttons, check boxes and text areas take valid data. Test for valid data at the boundaries as well. Use the Appendix D - Input Validation Checklists’ Boundary Value Test

2. Test if special characters such as \ / : * ‘ < > | ! “ $ % & () + - ` ~ , ? @ # [] ^ give an error when written in the text boxes or text area fields. Use the Appendix D - Input Validation Checklists’ – Special Character Test.
3. Test to make sure text boxes and text areas do not let users input more data than the database has been set up for. Use the Appendix D - Input Validation Checklists’ – Boundary Value Test.
4. Test to make sure numeric fields do not allow alphanumeric characters and vice versa – i.e. text based fields do not allow numeric characters.

5. Check for valid error messages BEFORE the form is submitted.

Testing Browser Compatibility:
6. Test the form in different browsers to ensure everything works as expected. See HEI browser policy and use Appendix E - Browser & Operating System Compatibility Test Matrix.
Testing functionality of the form:
7. Make a list of all tables which will provide input data to the application.

8. Make a list of all tables which receive output data from the application.

9. Make a list of all log tables which are used in this process.

10. Create a spreadsheet with :

a. Test Case Ref number from SRS (Traceability Matrix)

b. Description of Actual Test,

c. Field (particular field being tested or the entire table row),

d. Input value,

e. Expected result,

f. Whether tested?,

g. Test Successful?
h. Comments

11. For each test case, if the web form is being pre-filled with some existing values in the database, check to make sure that those values are coming from the correct input tables. A spreadsheet as mentioned above can be used with input values being rows from various input tables. Or, if there are particular important fields which you are interested in, only those existing fields and expected changed values can be noted.

12. For each of the test cases, check to make sure all the tables are being populated with the data as was submitted from the web.

13. Check to ensure that the right years and terms are being populated.

14. Check to ensure that if the web application errors in the middle of the process, all the tables are set to their original values and do not have any portions with some inserted values or some deleted values etc.

15. Recommended testing methods to use include: Unit Testing (Boundary values and special character testing), Functional Testing (Black box methods), Browser & OS Testing, Error Handling, Regression Testing (incase web form is changed in future) and Stress Testing.
Appendix D TC "Appendix D (Input Validation Matrix)" \f C \l "1"
	Input Validation Matrix - Special Character Test

	

	

	

	
	 \ Backslash
	 / Slash
	 : Colon
	 * Asterisk
	 ' Single Quote
	 < Greater than
	 > Less than
	 | Pipe
	 ` Back Tick
	 Space

	 Text Fields
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

Appendix D (Continued)

	Input Validation Matrix - Boundary Value Test

	
	

	
	

	
	NULL
	Valid Value
	At Lower Boundary of Value
	At Upper Value of Boundary
	At Lower Boundary of Value -1
	At Lower Boundary of Value + 1
	At Upper Value of Boundary -1
	At Upper Value of Boundary +1
	Outside of Lower Boundary of Value
	Outside of Upper Boundary of Value
	0
	Negative Value
	Valid Number of Digits or Characters
	At Lower Boundary of number of digits or Characters
	At Upper Boundary of number of digits or Characters
	At Lower Boundary of number of digits or Characters + 1
	At Lower Boundary of number of digits or Characters -1
	At Upper Boundary of number of digits or Characters +1
	At Upper Boundary of number of digits or Characters - 1

	Text Fields
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Appendix E
" \f C \l "1"

Browser & Operating System Compatibility Matrix

	Operating Systems
	
	
	
	
	

	
	
	
	
	
	
	

	Release
	98
	2000
	Macintosh
	
	
	

	Original
	
	
	
	
	
	

	SP 4
	
	
	
	
	
	

	SP 5
	
	
	
	
	
	

	SP 6
	
	
	
	
	
	

	SP – Service Pack
	
	
	
	
	

	This grid below needs to be filled for each Operating System
	
	

	
	
	
	
	
	
	

	O/S
	
	
	
	
	

	
	
	
	
	
	
	

	Resolution
	Font Size
	Netscp 4.7
	Netscp >= 6.0
	IE 5.0
	IE > 5.0
	Comments

	
	
	
	Ver =
	
	Ver =
	

	800 X 600 (optional)
	Small
	
	
	
	
	

	
	Medium
	
	
	
	
	

	
	Large
	
	
	
	
	

	1024 x 768 (required)
	Small
	
	
	
	
	

	
	Medium
	
	
	
	
	

	
	Large
	
	
	
	
	

	1280x1024 (optional)
	Small
	
	
	
	
	

	
	Medium
	
	
	
	
	

	
	Large
	
	
	
	
	

Appendix F TC "Appendix F (Edit and Load Checklist) " \f C \l "1" – Edit and Load Checklist

Testing Edits:

1. Check to make sure all fields in the submission take valid data with no errors reported.

2. Test if special characters such as \ /:*’<>|! Are handled properly by the edit and load programs.

3. Perform Basis Path testing, Functional Negative testing, Boundary Value analysis and Equivalence Partitioning as needed.

4. During testing, create an SQL script to set up the testing environment. This script can be used later on for regression testing.

Example:

To test an ‘056’ edit in the CN edit, at least two tests should be performed. First (056-A) the edit should be tested to show that correct data passes the edit. Second (056-B), functional negative testing should be done; a situation should be created in which the error is flagged.

Following is the SQL script to set up the test environment to perform these two test cases:

	--see test case 5a, 5b in traceability matrix

delete from stud_enroll
where inst_code = 'AKRN'
and obrid in ('000179541', '000179470')

delete from stud_entrance
where inst_code = 'AKRN'
and obrid in ('000179541', '000179470')

delete from inst_ssn
where inst_code = 'AKRN'
and obrid in ('000179541', '000179470')

insert into inst_ssn values ('AKRN', '273747887', '000179541', 'N')
insert into inst_ssn values ('AKRN', '273709649', '000179470', 'N')

--056-A (stud_enroll record, edit passes)
insert into stud_entrance values ('000179541', 'AKRN', 'UND', 1998, 'SP', 'M', '1978', AI', 'OH', '41', '43948', '08', 1997, 'AU', 'N')
insert into stud_enroll values ('000179541', 'AKRN', 1998, 'SP', 'AKRN', 'UND', 'SO', 'R', 'N', 'EL', '450801', 'D', 'N')

--056-B (no stud_enroll record, edit flagged)
insert into stud_entrance values ('000179470', 'AKRN', 'UND', 1998, 'SP', 'F', '1974', 'UK', 'OH', '85', '44691', 'UK', 1998, 'SP', 'N')

A submission containing these two records can be created and submitted to edit:

	AKRNCN1998SP000002

AKRN2737478871840300 0080 040IYN

AKRN2737096491840300 0080 040IYN

Upon completion, the edit report shows the expected results:

	ERROR TOTAL ERROR MESSAGE

CODE COUNT

056 1 There is no record of this student in the Student

 Enrollment table for this campus, year and term

……

IDENTIFIER ERROR ERROR FIELD ERROR

 CODE VALUE

AKRN 056 No SN record for this student 273709649/AKRN

273709649

1840300

0080

Testing Loads:

5. After loading, make sure the obrids have been assigned correctly. For ids loaded to pgrm_ssn, verify that pgrm_inst_code and pgrm_code have the correct values.

6. For any inserts, check to make sure all the tables are being populated with the data as was submitted.

7. For any deletes, verify the correct rows were removed from the tables

8. For any updates, verify the correct rows were updated with the correct values.

9. Check to make sure the right years and terms are being populated

10. Check the accuracy of any calculated values, status changes, etc.

Recommended testing methods to use for Edits and Loads include: Unit Testing, Functional Requirements, Error Handling, Control and Regression testing (Refer the methods described in this guide earlier)

Appendix G TC "Appendix G (Operations Testing Approach Checklist) " \f C \l "1" – Operations Testing Approach Checklist
	Operations Testing Procedures
	Satisfactorily Completed
	Notes
	Date Completed

	1. Develop system or user acceptance test cases for the system test, based on the (draft) documentation. If these test cases do not work, it may indicate flaws in the documentation or in the system itself.
	
	
	

	2. Ensure the documents are readable as possible prior to inspections
	
	
	

	a. Spell and grammar check the documents
	
	
	

	b. Index and cross-reference the documents
	
	
	

	c. Consistent use of terminology
	
	
	

	d. Use of graphics were possible
	
	
	

	e. Ensure hypertext links are working
	
	
	

	3. Review user feedback comments from earlier similar documentation.
	
	
	

	4. Review user inspections of the user documentation, and walkthrough the user work procedures using the documentation.
	
	
	

	a. With user subject matter experts
	
	
	

	b. With novices, i.e., typical people who are actually likely to use the user documentation
	
	
	

	5. Conduct technical inspections with the system users of the system documentation, i.e., maintenance and operations staff.
	
	
	

	6. Field test the documentation during training and system installation, preferably with representative actual users of the documentation.
	
	
	

	7. Check the “fog factor”. To the degree that the target audience (not the authors) cannot read and understand the documentation, the usability of the documentation is impaired.
	
	
	

	8. Ensure that the version of the documentation being reviewed is the same as the current or final version of the system. Ensure that the on-line and paper versions of the documentation say the same thing. Ideally, both the system and its documentation should be under the same coordinated version control.
	
	
	

	9. Check if there is a glossary of term accompanying the documentation. There should be one, except for the simplest of systems. Verify that this glossary uses standard, commonly accepted terminology and that it defines the terms correctly.
	
	
	

	10. Check if there is an index for the documents. There should be one. Check that the set of entries is reasonably rich and complete. Check that the index references the correct pages.
	
	
	

	11. As appropriate, check the documents have been created using a standard for document formatting, definition, integration and re-use.
	
	
	

	12. Spend the money for a professional editor or at least for a proof reader. These professionals add value far beyond their costs.
	
	
	

	13. Check the internal consistency and traceability of the various forms of the documentation. For example, can a feature description in the user requirements document be easily traced to its description in the user manual?
	
	
	

	14. Ensure that the quality of documentation is not overlooked as one of the acceptance criteria for the system. The system cannot be released or delivered without usable documentation, and the client satisfaction may depend heavily on the quality of the documentation.
	
	
	

List of References TC "List of References" \f C \l "1"
1. Systems Testing and Quality Assurance Techniques – Volume I & II.

2. Testing Applications on the Web : Hung Q. Nguyen

3. Managing the Software Process : Watts S. Humphrey

4. Software Testing in the Real World – Improving the Process : Edward Kit

5. Software Engineering – A Practitioner’s Approach : Roger S. Pressman

6. Testing IT – An off-the-shelf Software Testing Process : John Watkins

Testing Examples in HEI TC "Testing Examples in HEI" \f C \l "1"
1. Capital Project –

a. Capital Project Request form collects data from institutions and stores them in various Sybase tables.

b. The form was modified to a large extent. Therefore the Sybase tables were changed to accommodate it.

c. Existing data residing in tables therefore needed to be translated into the new fields. Business rules were written to make necessary changes.

d. As a first step, translation of production data was done per the rules and stored in Dev. Since this same testing will need to be performed again when the data goes to production, test cases needed to be repeatable.

e. Location : L:\HEI-General\Development Projects\Capital\Capital Projects\Capital Project Request Form Updates\Requirements\Changes in Capital Project Request Form\Testing
f. Files :

i. Business Rules for data translation.doc ;

ii. Test Script for testing prod data translation to dev.sql

iii. Testing Translated Data.xls

2. Alliance Project –
a. Fifteen Ohio higher education institutions united to form the Ohio Science and Engineering Alliance (OSEA). The Alliance aims to double the number of undergraduate students from diverse backgrounds who earn bachelor’s degrees in science and high-tech fields and increase the number who go on to pursue graduate degrees. This collaborative is funded by the National Science Foundation (NSF) which requires OSEA to report data for analysis.

b. HEI designed a web interface that would allow OSEA and member-institutions to download enrollment and degree reports for students in specific Subject Codes related to the match and sciences.

c. The enrollment and degree reports are created using existing data flows for public institutions and a mix of existing and supplemental data flows for private institutions.

d. The aggregate enrollment and degree reports are output by HEI in an Excel spreadsheet, verified by OSEA staff and subsequently loaded by OSEA staff to NSF’s collection site.

e. Location: L:\HEI-General\DevelopmentProjects\Enrollment\Alliance\1.2 Requirements\Testing_Alliance_08252004.xls

f. Files :
i. SRS document :
L:\HEI-General\Development Projects\Enrollment\Alliance\1.2 Requirements\srs_other_Alliance_Download_06082004.doc
ii. Project Charter :

L:\HEI-General\Development Projects\Enrollment\Alliance\1.1 Concept\ProjectCharter_Alliance_Downloads_06022004.doc
iii. Master Test Plan:

L:\HEI-General\Development Projects\Enrollment\Alliance\1.2 Requirements\testplanmaster_Alliance_Downloads_06282004.doc
10

9

8

6

3

7

5

4

2

1

Edge

Node

Software Testing Guide
October 2004
Page 26 of 43

