Ohio Articulation Number (OAN)
Course Submission Form
2005-2006

College/University Edison Community College

Course(s) Submitted (Title & Course #) ELT-241S, Microcontrollers for
Ohio Articulation Number OET 004

Date 1 August 2006 Course 1 of a 1 Course OAN mapping.

Name and title of individual submitting on behalf of the college/university
Name Amanda Swigert Title Administrative Assistant to Vice President
Address 1973 Edison Drive
E-mail Swigert@edisonohio.edu
Phone 937-778-7822
Fax 937-778-1920

Credit Hours 4 qtr X sem X
Lecture Hours 3 (if applicable)
Laboratory Hours 2 (if applicable)

Pre-Requisites(s) Course work (if applicable)
ELT-141S, Digital Electronics

Placement Score (if applicable)
(Name of test)
(Score)

Catalog/Course Description (Includes Course Title and Course #)
Introduction to wiring and programming a micro-controller. The target micro-
controller for applications in this course will be one that is common in
industrial applications. Programming is done in assembly language. The
student will construct, program, debug, and interface inputs and outputs to a
single board computer. Prerequisite: ELT141S. Lab fee.

Texts/Outside Readings/Ancillary Materials
Course Objectives and/or Plan of Work

COURSE GOALS:

The student will:

1. Describe the fundamental elements of every computer system.
2. Assemble a micro-controller.
3. Create flow charts to show the flow/function of a program.
4. Write programs to move data and perform arithmetic and logic operations.
5. Create branches and loops within a program using conditional statements.
6. Organize code into subroutines.
7. Use assembler directives to enhance source code.
8. Utilize program memory and variable memory in programs.
9. Interface input and output devices with the micro-controller.
10. Describe the process of servicing interrupts.
11. Demonstrate the process of analog-to-digital conversion.
12. Cause output events to happen at specified times.
13. Explain the difference between asynchronous and synchronous serial communications.

TOPIC OUTLINE:

1. Introduction to micro-controllers
2. CPU architecture
3. Instruction set
4. Assembling the micro-controller.
5. Program development.
6. Structured assembly preprocessor
7. Alphanumeric liquid-crystal displays
8. Rotary pulse generators
9. Interrupts and interrupt timing
10. Analog-to-digital conversion
11. Time-interval measurements
12. Math Subroutines
13. Serial communications.

Description of Assessment and/or Evaluation of Student Learning

Grading:

Midterm: 20%
Labs: 50%
Homework: 20%
In class participation: 10%

Exams will be open notes, open book. Notes may include your own assignments, labs,
Master Syllabi and Working Syllabi (if both are used)

COURSE DESCRIPTION:

Introduction to wiring and programming a micro-controller. The target micro-controller for applications in this course will be one that is common in industrial applications. Programming is done in assembly language. The student will construct, program, debug, and interface inputs and outputs to a single board computer. Prerequisite: ELT141S. Lab fee.

COURSE GOALS:

The student will:

1. Describe the fundamental elements of every computer system.
2. Assemble a micro-controller.
3. Create flow charts to show the flow/function of a program.
4. Write programs to move data and perform arithmetic and logic operations.
5. Create branches and loops within a program using conditional statements.
6. Organize code into subroutines.
9. Use assembler directives to enhance source code.
10. Utilize program memory and variable memory in programs.
9. Interface input and output devices with the micro-controller.
10. Describe the process of servicing interrupts.
14. Demonstrate the process of analog-to-digital conversion.
15. Cause output events to happen at specified times.
16. Explain the difference between asynchronous and synchronous serial communications.

TOPIC OUTLINE:

1. Introduction to micro-controllers
3. CPU architecture
3. Instruction set
15. Program development.
16. Structured assembly preprocessor
17. Alphanumeric liquid-crystal displays
18. Rotary pulse generators
19. Interrupts and interrupt timing
20. Analog-to-digital conversion
21. Time-interval measurements
22. Math Subroutines
23. Serial communications.

TEXT: Peatman, Embedded Design with the PIC18F452 Microcontroller, Prentice Hall 2003.
SYLLABUS
PART II
EDISON COMMUNITY COLLEGE
ELT 241S – MICROCONTROLIERS
4 CREDIT HOURS

Instructor: Susan Barth
Home phone: 335-1797
Cell phone: 524-1482
Email: dbarth1773@hotmail.com or sbarth@edisonohio.edu

<table>
<thead>
<tr>
<th>Week of</th>
<th>Topic</th>
</tr>
</thead>
</table>
| Aug. 25 | CH 1 (Introduction, Flash Memory Technology), CH 2.2, 2.3, 2.7, 2.8 (CPU Architecture, Processor Comparison: Motorola, Microchip, Intel, Bus architecture and timing, Memory types: Direct addressing, Indirect addressing)
Thursday | CH 2 continued |
| Sept. 1 | Lab #1, Appendix A1 (Construction of your microprocessor)
Thursday | CH 3 (Assembly Instruction Set), Lab #1, Appendix A1 |
| Sept. 8 | Lab #1 continued
Thursday | CH 4 (QwikFlash Target Board), CH 5 (Assembly Program Development) |
| Sept. 15 | Lab #2 pg. 400 (Introduction to the Microcontroller Development Environment)
Thursday | Lab #3 pg. 404, CH 6 (Slow rate control development using loops) |
| Sept. 22 | CH 7 (Alphanumeric Liquid –crystal Displays)
Thursday | CH 7 continued |
| Sept. 29 | Lab #4 pg. 405 (Enhanced Slow Rate Control)
Thursday | CH 14 (Math Subroutines) |
| Oct. 6 | Lab #5 pg. 406 (New DISPLAY Utility)
Thursday | CH 8 (Rotary Pulse Generators), CH 20.2 & 20.3 (Config. Bytes & Oscillator Alter.) |
| Oct. 13 | Review
Thursday | Midterm |
Oct. 20 Lab #6 pg. 407 (Square Wave Generator – Part 1)
 Thursday CH 16 (Output Time-Interval Control)
Oct. 27 Thursday CH 10 (Analog-to-Digital Conversion), CH 11 (I/O Pin
Considerations)
Nov. 4 Lab #7 pg 410 (Square Wave Generator – Part 2)
 Thursday Lab #8 pg. 412 (Rate RPG/ADC Use)
Nov. 10 Thursday CH 9 (Interrupts and Interrupt Timing)
Nov. 17 Thursday CH 12 (LCD Screens)
Nov. 24 Thursday CH 13 (Time –Interval Measurements)
Nov. 24 Thursday Lab #9 pg. 414 (Max PW)
Dec. 1 Thursday Lab #9 pg. 414 (Max PW)
 Thursday Thanksgiving, NO CLASS!
Dec. 1 Thursday Ch 15 (Serial Peripheral Interface for I/O Expansion)
Dec. 1 Thursday Lab #10 pg 415 (Temperature Display)

Grading:
Midterm: 20%
Labs: 50 %
Homework: 20%
In class participation: 10%

Exams will be open notes, open book. Notes may include your own assignments, labs, etc.

Additional Documentation

<table>
<thead>
<tr>
<th>Microprocessors - Learning Outcomes</th>
<th>ELT 241S - Course Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microprocessor architecture</td>
<td>1</td>
</tr>
<tr>
<td>Intel microprocessors</td>
<td>1</td>
</tr>
<tr>
<td>Motorola microprocessors</td>
<td>1</td>
</tr>
<tr>
<td>Assembly language programming</td>
<td>3,4,5,6,7</td>
</tr>
<tr>
<td>Bus timing diagrams</td>
<td>12,13</td>
</tr>
<tr>
<td>Bus structures</td>
<td>1,9</td>
</tr>
<tr>
<td>Memory technologies and interfacing</td>
<td>1,9</td>
</tr>
<tr>
<td>Input/output interface</td>
<td>9</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>Input/output systems</td>
<td>9,11</td>
</tr>
<tr>
<td>Interrupt-processed input/output</td>
<td>10</td>
</tr>
<tr>
<td>Direct memory access (DMA)</td>
<td></td>
</tr>
<tr>
<td>Microcontroller applications</td>
<td>11,13</td>
</tr>
<tr>
<td>Microprocessor-based communications</td>
<td>12,13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBR Use</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved</td>
<td></td>
</tr>
<tr>
<td>Additional Information</td>
<td></td>
</tr>
<tr>
<td>Requested</td>
<td></td>
</tr>
<tr>
<td>Rejected</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
</tr>
</tbody>
</table>